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Abstract: Autism Spectrum Disorder (ASD) encompasses a clinical spectrum of neurodevelopmental
conditions that display significant heterogeneity in etiology, symptomatology, and severity. We
previously compared 30 young children with idiopathic ASD and 30 unrelated typically-developing
controls, detecting an imbalance in several compounds belonging mainly to the metabolism of
purines, tryptophan and other amino acids, as well as compounds derived from the intestinal flora,
and reduced levels of vitamins B6, B12 and folic acid. The present study describes significant uri-
nary metabolomic differences within 14 pairs, including one child with idiopathic ASD and his/her
typically-developing sibling, tightly matched by sex and age to minimize confounding factors, al-
lowing a more reliable identification of the metabolic fingerprint related to ASD. By using a highly
sensitive, accurate and unbiased approach, suitable for ensuring broad metabolite detection coverage
on human urine, and by applying multivariate statistical analysis, we largely replicate our previous
results, demonstrating a significant perturbation of the purine and tryptophan pathways, and further
highlight abnormalities in the “phenylalanine, tyrosine and tryptophan” pathway, essentially involv-
ing increased phenylalanine and decreased tyrosine levels, as well as enhanced concentrations of
bacterial degradation products, including phenylpyruvic acid, phenylacetic acid and 4-ethylphenyl-
sulfate. The outcome of these within-family contrasts consolidates and extends our previous results
obtained from unrelated individuals, adding further evidence that these metabolic imbalances may be
linked to ASD rather than to environmental differences between cases and controls. It further under-
scores the excess of some gut microbiota-derived compounds in ASD, which could have diagnostic
value in a network model differentiating the metabolome of autistic and unaffected siblings. Finally,
it points toward the existence of a “metabolic autism spectrum” distributed as an endophenotype,
with unaffected siblings possibly displaying a metabolic profile intermediate between their autistic
siblings and unrelated typically-developing controls.

Keywords: metabolomics; autism; mass spectrometry; sibling

1. Introduction

Autism Spectrum Disorder (ASD) spans a wide range of neurodevelopmental condi-
tions characterized by deficits in social interaction and communication, repetitive behaviors,
restricted and unusual interests, rigid adherence to routines, and abnormal sensory pro-
cessing [1]. Its prevalence rates range from 1/54 children and 1/45 adults in the United
States [2,3] to 1/87 children in Italy and 1/102 adults in England [4,5]. ASD displays
significant heterogeneity in terms of etiology, symptomatology, developmental trajectory,
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level of disability and degree of support required for daily living [6]. Autism is caused by
neurodevelopmental anomalies established in the prenatal and/or early postnatal period,
generally producing relative hypo-connectivity between distant brain areas in the face of
local hyperconnectivity [7]. The resulting neural networks show a reduced capacity to inte-
grate information, producing, in addition to the pathognomonic deficit of social cognition,
deficits in sensory–motor integration, movement coordination, executive functions and
abstract thinking [6]. ASD begins in early childhood, and autistic behaviors are first ob-
served in the majority of children during the second year of postnatal life [6]. The etiology
of ASD is very heterogeneous and complex. On the one hand, the existence of a strong
genetic component has been conclusively demonstrated: up to approximately 40% of cases
appear due to a syndromic form, a single monogenic cause or an oligogenic form involving
multiple Copy Number Variants (CNVs) and/or rare germline inherited variants or de
novo mutations in epistatic interaction; about 5% of ASD cases are estimated to be due to
somatic mutations [8]. On the other hand, the scenario most likely to explain the remaining
majority of cases implies gene x environment interactions, whereby a genetic predisposition
conferred by common variants and/or rare variants with incomplete penetrance seemingly
interacts with an environmental component either directly deranging neurodevelopment
or producing an epigenetic and/or splicing dysregulation with functional consequences
synergistic to those of the predisposing genetic variants. In addition to environmental
factors classically known to be able to cause ASD, such as prenatal exposure to valproic acid
and infections with rubella or cytomegalovirus [9], several more common factors have been
shown to possibly provide additive or synergistic contributions to ASD, including preterm
birth, perinatal hypoxic-ischemic damage, immunological activation during pregnancy, sev-
eral chemical pollutants, etc. [10,11]. In this area of investigation, increasing interest is being
raised by the microbiote, which may produce metabolites able to derange neurodevelop-
ment either directly, as in the case of p-cresol [12,13], or indirectly, for example, by altering
the splicing of neurodevelopmentally-relevant genes in the central nervous system [14]. To
add another layer of complexity, epigenetic dysregulation in the promoter of genes relevant
to neurodevelopment has even been found in the sperm cells of fathers of children with
ASD, unexpectedly extending the possibility of gene–environment interactions to parental
gametes, involving the generations upstream of the affected child [15].

Noticeably, after a first child is diagnosed with ASD, his/her future “baby siblings”
will be at higher risk of ASD compared to the above-mentioned approximate 1% population
prevalence: ASD recurrence rates in these families are, in fact, estimated on average at
15–25% for male newborns and 5–15% for female newborns [16,17]. Furthermore, first-
degree relatives sometimes display minor autistic traits, which are indeed subthreshold
relative to a full DSM-5 diagnosis, but indeed witness the existence of a continuum of
the autism spectrum in the general population, rather than an “affected/unaffected” di-
chotomy [18]. Genetics is a logical contributor to familial risk because siblings share 50%
of their genome, a lot more than genetically unrelated individuals, but also shared envi-
ronment may well contribute [19,20], as outlined above, and with the exception of patients
carrying known monogenic etiologies, it is generally not possible at the single family level
to tease out the relative role of genes and environment. For example, unaffected siblings at
times do carry some of the genetic variants that confer ASD vulnerability to their autistic
siblings but display only minor or no traits thanks to resilience factors, which may be either
genetic or environmental/epigenetic in nature [21]. Importantly, regardless of the cause
leading to ASD in every single instance, it is clear that, in multiple ways, unaffected siblings
of autistic individuals are not equivalent to unrelated typically-developing controls. The
study of families with multiple children, some affected by ASD and others unaffected,
can thus provide important clues to the etiology of ASD, above and beyond the study
of unrelated samples of children with ASD vs. typical development. This information
may also provide clinical benefits because the development of early intensive intervention
programs in this last decade and the demonstration of their efficacy in a sizable subgroup of
young children displaying autistic behaviors pressures health systems to devise strategies
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aimed at promoting early and reliable diagnoses. To date, the diagnosis of ASD is still
based on clinical observation and would greatly benefit from the identification of objective
biological markers for screening, detection, and/or risk estimation, especially in families at
increased risk of having a second child diagnosed with ASD.

Several studies have reported an altered metabolome associated with ASD during
childhood, either in blood [22,23] or in urine [24]. However, although some biochemical
markers or sets of markers seem promising [25], none has yet been proven robust enough
for reliable early intra-family detection. Furthermore, it remains unclear at what point in
life biochemical abnormalities of ASD become detectable. Until a few years ago, the use
of metabolomics in clinical practice was unthinkable due to its prohibitive costs, but in
the last ten years, improved and more affordable technologies have allowed its applica-
tion in the clinic, with concrete benefits both for the patient and for the containment of
healthcare costs. Metabolomics is able to ascertain the presence of biochemical imbalances,
which are frequently present in autistic children, mainly involving amino acids, reactive
oxidative stress, neurotransmitters, and the microbiota–gut–brain axis, as reviewed by
Likhitweerawong et al. [26] and by Garcia-Gutierrez [27]. This approach also allows for the
complete elucidation of abnormal biochemical pathways and, in some cases, can offer clues
to fundamental abnormalities that may lead to an autistic phenotype in children.

Our initial study [24] involved unrelated individuals, contrasting 30 young autistic
children vs. 30 age- and sex-matched typically-developing controls. It unveiled ASD-
related imbalances mainly in the tryptophan and purine metabolic pathways. Interestingly,
increases were also detected for some tryptophan-related compounds, such as indolyl
3-acetic acid and indolyl lactate, produced exclusively by the gut microbiome. Two sub-
sequent studies extended these initial findings, detecting imbalances in monoaminergic
metabolites with increased dopamine and decreased norepinephrine levels [28] in con-
junction with decreased levels of vitamins B6, B9 and B12 [29]. The aim of the current
study is to replicate and extend these previous findings in same-sex, age-matched pairs of
autistic children and typically-developing siblings. Using this within-family paired design,
we aim to identify metabolome variations that can be used to discriminate between ASD
patients and unaffected siblings, minimizing the influence of confounding factors present
in an unpaired design, such as case-control differences in age, gender, diet and exposure to
environmental factors, allowing a more reliable identification of the metabolic fingerprint
related to the disorder.

2. Material and Method
2.1. Sample Collection
2.1.1. Subjects Recruitment

Within-family pairs, including one autistic and one unaffected sibling, were selected
from a sample of over 300 ASD families on the basis of sex- and age-matching (±2 y).
Ultimately 14 pairs were recruited and analyzed, yielding a total of 28 subjects, whose de-
mographic and clinical characteristics are summarized in Table 1. The male-to-female ratio
was 3.7:1 (M:F = 11:3), in line with the known male predominance of ASD diagnoses [2–5].
ASD patients were not receiving any psychopharmacological treatment at the time of
urine collection; two patients were taking melatonin (1 mg) at bedtime. In reference to
co-occurring conditions, 7/14 (50%) patients had sleep disorders (difficulty falling asleep
and/or night awakenings) and 4/14 (28.6%) had chronic constipation. In reference to their
diet, two ASD cases were on a gluten-free diet, and one was on a casein-free diet, while
the remaining 11 cases were not following any specific diet; three children were taking
only semi-liquid foods due to deficits in chewing and swallowing solid foods. The study
was approved by the local Ethical Committee (19 June 2017), and in accordance with the
Helsinki Declaration, written informed consent was obtained from both parents of each
child. Children were diagnosed with ASD based on DSM-5 criteria [1], although DSM-
IV subtyping was still performed (Table 1). The clinical diagnosis was confirmed using
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ADOS-2 [30] and ADI-R [31]; additional psychodiagnostic assessments were performed, as
previously described [32].

Table 1. Demographic characteristics of the sample (N = 14 ASD and 14 typically-developing siblings)
and main clinical features of the 14 children with ASD. * One ASD patient with intellectual disability
was not testable. Abbreviations: IQ, Intellectual Quotient; PDD-NOS, Pervasive Developmental
Disorder—Not Otherwise Specified; SEM, Standard Error of the Mean; VABS, Vineland Adaptive
Behavior Scales.

N Mean/Median (Range) or %

Age in yrs
(mean± SEM)

-ASD
-Unaffected siblings

14
14

7.06 ± 0.96 (3.2–15.6)
6.68 ± 1.28 (1.0–14.0)

Gender:
Male 11 pairs 78.6%

Female 3 pairs 21.4%
M/F ratio 3.7:1

I.Q.
Mean ± SEM 13 * 64.7 ± 6.78 (30–104)

>70 7 50.0%
≤70 7 50.0%

DSM-IV Diagnosis:
Autistic Disorder 10 71.5%

Asperger Syndrome 1 7.1%
PDD-NOS 3 21.4%

Level of Expressive Language
Sentences 3 21.4%

Words 7 50.0%
Non-verbal 4 28.6%

Median VABS Scores:
Communication 12 73.5 (31–115)

Daily Living Skills 12 78.5 (48–113)
Socialization 12 73.0 (55–116)
Motor Skills 8 87.5 (56–111)
Composite 12 73.5 (47–115)

2.1.2. Sample Preparation

First-morning urine samples (10–30 mL) were collected at home by parents using
sterile containers un-treated with preservatives and were brought to each clinical center
the same morning in wet ice. Urine samples were then aliquoted, frozen, shipped in dry
ice, and stored at −80 ◦C continuously until analysis.

An aliquot of each urine sample was thawed and normalized by urinary specific
gravity (see Supplementary Table S1). Each normalized urine sample (Supplementary
Table S1) was then added to 1000 µL of a chloroform/methanol/water (1:3:1 ratio) solvent
mixture stored at −20 ◦C. The tubes were mixed for 30 min and subsequently centrifuged at
1000× g for 1 min at 4 ◦C, before being transferred to −20 ◦C for 2–8 h. The solutions were
then centrifuged for 15 min at 15,000× g and were dried to obtain visible pellets. Finally,
the dried samples were re-suspended in 0.1 mL of water, 5% formic acid and transferred to
glass autosampler vials for LC/MS analysis. Quality controls (QCs) were obtained from a
pooled mixture of 10 µL aliquots of all urine samples and were analyzed every 5 samples.

2.2. Metabolomic Analysis and Data Processing

Twenty microliters of extracted supernatant samples was injected into an ultrahigh-
performance liquid chromatography (UHPLC) system (Ultimate 3000, Thermo, Rockford,
IL, USA) and run on a positive mode: samples were loaded onto a Reprosil C18 column
(2.0 mm × 150 mm, 2.5 µm-Dr. Maisch, Ammerbuch-Entringen, Germany) for metabolite
separation. For positive ion mode (+) MS analyses, a 0–100% linear gradient of solvent A
(ddH2O, 0.1% formic acid) to B (acetonitrile, 0.1% formic acid) was employed over 20 min,
returning to 100% A in 2 min and holding solvent A for a 1-min post time hold. Acetonitrile,
formic acid, and HPLC-grade water and standards (≥98% chemical purity) were purchased
from Sigma Aldrich. Chromatographic separations were made at a column temperature of
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30 ◦C and a flow rate of 0.2 mL/min. The UHPLC system was coupled online with a Q
Exactive mass spectrometer (Thermo) scanning in full MS mode (2 µ scans) at a resolution
of 70,000 in the 67 to 1000 m/z range, a target of 1106 ions and a maximum ion injection
time (IT) of 35 ms with 3.8 kV spray voltage, 40 sheath gas and 25 auxiliary gas. LC-MS/MS
analysis of each sample was performed in order to achieve the mass fragmentation spectra.
In this method, during the chromatographic run, both full scan and MS2 spectra of the
three most intense ions of each full scan were acquired. The resolving power for MS2 scans
was 7000. Product ions were generated in the LTQ trap at collision energy 30 eV using an
isolation width of 2 Da.

Calibration was performed before each analysis against positive or negative ion mode
calibration mixes (Pierce, Thermo Fisher, Rockford, IL, USA) to ensure the error of the intact
mass within the sub ppm range.

Replicates were exported as .mzXML files and processed through MAVEN.8.1. Mass
spectrometry chromatograms were created for peak alignment, matching and comparison
of parent and fragment ions with tentative metabolite identification (within a 2 p.p.m. mass-
deviation range between the observed and expected results against an imported KEGG
database). Data were at first normalized by sum, logarithmic transformation, and auto-
scaling, according to Pareto. Univariate statistical analysis included the non-parametric
Mann–Whitney U test and the Spearman’s rho (ρ) correlation test. The non-parametric
Mann–Whitney U test evaluated differences in urine metabolite levels between groups;
p < 0.05 was considered statistically significant.

Fold change analysis was performed on the entire metabolomics data set using the
MetaboAnalyst 5.0 software (https://www.metaboanalyst.ca/docs/Publications.xhtml,
accessed on 15 August 2022). Before the analysis, raw data were normalized by median and
autoscaling in order to increase the importance of low-abundance ions without significant
amplification of noise. The purpose of fold change (FC) analysis was to compare absolute
value change between two group averages and find some features that are changed con-
sistently (i.e., upregulated or down-regulated) between two groups. MetPA was used to
construct and analyze metabolic pathways; the species was set to the human database, and
the numbers of the potential metabolites were entered for this pathway analysis. Using
topological analysis, the cutoff value of the metabolic pathway influence was set to 0.2, and
pathways with a value greater than 1 were selected as potential key metabolic pathways.

2.3. Calculation of Concentration Ratios of Selected Urinary Metabolites to Specific Gravity

Urinary specific gravity was measured by refractometry following centrifugation at
13,000× g for 10 min, using a digital refractometer (Euromex Clinical Digital Refractometer
RD.5712, NL) previously calibrated with LC-MS grade water.

3. Results
Metabolic Profiling Using Untargeted Metabolomics in LC-MS Platform

An untargeted metabolomics analysis was performed, and more than 1000 peaks
per sample were referred to the KEGG database; among them, 256 metabolites have
been analyzed more precisely and identified. The Principal Component Analysis (PCA)
score plot derived from the untargeted metabolomics data indicated that the ASD group
and their typically-developing siblings could be separated and that the first and second
principal components (PC1 and PC2) explain 19.3% and 11.5% of the variance, respectively
(Figure 1A). Starting from the loading plots displayed in Figure 1B, where each data point
represents the entire metabolome of a single individual and some data points may be
superimposed to each other, various discriminating metabolites could then be identified as
responsible for the clear separation between ASD children and their typically-developing
siblings by using Volcano plot analysis (Figure 2).

https://www.metaboanalyst.ca/docs/Publications.xhtml
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Figure 1. (A) Multivariate statistical analysis based on untargeted metabolite profile data derived
from urine samples of ASD patients (red), typically-developing siblings (green) and quality controls
(blue). Principal component analysis (PCA) in 3D based on normalized and mean-centered data of the
28 samples after outlier removal. Each sphere represents one sample. Axes are principal components
1 (x) and 2 (y), explaining 19.3% and 11.5% of the variation in the data, respectively. (B) Loading plots
of the first two principal components for the platform metabolites.
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Figure 2. Volcano plot: each point on the volcano plot was based on both p-value and fold-change
values, and in this study, these two values were set at 0.05 and 2.0, respectively. The points that
satisfy the condition p < 0.05 and fold change > 2.0 appear in pink color and are marker candidates,
whereas the others appear in gray and do not reach significance. On the x-axis, log2 (FC) is positive
when ASD > SIB and negative when ASD < SIB, so pink dots on the right side of the figure represent
metabolites significantly upregulated in autistic patients, and the pink dots on the left side repre-
sent the down-regulated metabolites. The x-axis corresponds to log2 (fold change), and the y-axis
corresponds to –log10 (p-value).
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This univariate analysis identified a significant accumulation of specific metabolites;
six of them are found in excess among autistic children (thiamine-phosphate, deoxyribose-
phosphate, hypoxantine, guanine, cystine and acetylysine), while nine others were over-
expressed in siblings (D-glucarate, phenylalanine, quinolinate, asparagine, piridoxyne,
methyl-histidine, xanthosine, uridine, and ornithine).

The KEGG pathway analysis of differentially abundant metabolites was performed
by MetaboAnalyst 5.0 to identify the disturbed metabolic pathways in autistic children
compared to their typically-developing sibling. Results of the “metabolome overview”
obtained through metabolic pathway analysis (MetPA) displayed in Figure 3 reveal that
the most perturbed metabolic pathway in ASD mainly corresponded to “phenylalanine-
tyrosine-and-tryptophan metabolism”, followed by “phenylalanine metabolism”, “purine
metabolism” and “glutathione metabolism”. These metabolic pathways will thus be dis-
cussed in greater detail.

Given the recurrent involvement of tryptophan and purine metabolisms in autism
spectrum disorder [24] and given the relevance of tryptophan- and purine-derived com-
pounds in many neural functions, we initially focussed our attention on these metabolisms
(Figure 4).

Although Figure 4 shows all the intermediates belonging to the tryptophan pathway
found using mass spectrometry analysis, only three of them show a statistically significant
variation. We notice an increase in xanthurenic acid and quinolinic acid and lower serotonin
levels. In the brain, quinolinic acid acts as a gliotoxin, proinflammatory mediator, and
pro-oxidant molecule, boosting oxidative stress by stimulating microglia to release large
amounts of NO and superoxide; in addition, it exerts excitotoxic effects by acting as an
N-methyl-D-aspartate (NMDA) receptor agonist, stimulating glutamate release, blocking
glutamate reuptake into astrocytes, and reducing the activity of glutamine synthase [33,34].
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displaying the largest differences in ASD vs. typically-developing siblings mainly corresponded
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Figure 5 shows purine metabolism, in particular, hypoxanthine and xanthosine, signif-
icantly increased in ASD patients compared to typically-developing siblings, while inosine
shows a non-significant decrease. Importantly, the release of these purine metabolites trig-
gers the “cell danger metabolic response” involving mitochondrial dysfunction, microglial
activation and neuroinflammation [35].
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An in-depth analysis concerned the metabolism of phenylalanine due to its significant
variation between paired ASD and “typically-developing siblings”. In our results (Figure 6),
lower levels of tyrosine are observed in the urine of autistic children compared to matched
typically-developing siblings, whereas higher contents of phenylalanine phenylethylamine,
phenylpyruvic and phenylacetic acid have been found. Noticeably, decreases in tyrosine
and increases in phenylalanine are paralleled by reduced levels of tetrahydrobiopterin
(BH4) and increased levels of dihydrobiopterin (BH2) in ASD compared to unaffected
siblings (Figure 6, insert A). BH4 is well-known to play a critical role in the conversion of
phenylalanine to tyrosine (see Discussion).
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Figure 6. Intermediates of the phenylalanine/L-tyrosine pathway by human cells and gut bacteria,
leading also to the formation of 4-ethylphenol sulfate (4-EPS) and p-cresol. are presented as the
differences between autistic subjects in red and typically-developing siblings in green. The columns
represent the mean ± SD (n = 14) of each metabolite concentration. * p < 0.05, ** p < 0.01, etabolites de-
rived from bacterial degradation are boxed in green, metabolites from human cell production in blue.
Solid lines represent established reactions, dotted lines represent presumed reactions taking place.

On the other hand, phenylpyruvic and phenylacetic acid are products of phenylala-
nine degradation from fermentable substrates by the intestinal gut microbiota. Figure 6
represents an overview of gut and host-microbial metabolism involved in the production
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of p-cresol [11,12,36,37] and of 4-ethylphenyl-sulfate (4EPS) [14,38]. These two metabo-
lites derived from gut bacteria are gaining more attention in ASD research due to their
neurochemical and behavioral effects [13,14,37–39]. In this sample, p-cresol is significantly
increased in ASD over siblings, whereas 4-EPS shows a non-significant trend.

4. Discussion

The present study, by using a multivariate statistical approach, describes significant
urinary metabolomic differences between young children with idiopathic ASD and their
typically-developing siblings, which confirms and expands previous observations by our
group. Since the urine content reflects what is happening in the whole organism, with
our metabolomics analysis, we are closer to taking into account the entire patient with a
systemic view. By studying and quantifying the metabolites present in biological fluids,
metabolomics offers an instantaneous view of the system, providing useful information
for interpreting the processes in the analyzed organism. The metabolites, or the small
molecules, can be considered as the final product of gene expression and protein activity,
therefore determining the biochemical phenotype of a biological organism. Through
metabolomics, indeed, it is possible to provide researchers and clinicians with the most
up-to-date information on possible biomarkers that can help them understand how to
act on therapeutic strategies for patients. At present, routine metabolic testing has been
recommended for patients with autism only on the basis of physical examination features
or historical details such as seizures, developmental regression, or acidosis, provided the
child has passed the relevant state-mandated newborn screening [26].

We previously demonstrated that untargeted metabolomics may be used to identify
many of the diagnostic and even secondary changes in downstream analytes by contrasting
young children with idiopathic ASD and unrelated typically-developing controls [24,28,29].
Applying this case-control design involving unrelated individuals, we indeed found an
imbalance in several compounds belonging mainly to the metabolism of purines, amino
acids, and tryptophan pathways, as well as compounds derived from the intestinal flora and
reduced levels of vitamins B6, B12 and folic acid [24,28,29]. Considering that metabolomic
approaches identify perturbations in metabolic pathways that are determined by genetic
and environmental factors [40] and that typically-developing siblings of autistic patients
can be considered a population that is intrinsically different from non-genetically-related
typically developing controls, as outlined in the Introduction, in this study we focused our
attention on contrasting autistic patients with their typically-developing siblings using an
intra-family design. Furthermore, contrasting autistic children with their unaffected siblings
reduces the probability of potential bias, linked to differential exposure to environmental
factors depending on the residential area, for example, and minimizes, though it does not
eliminate, the possible bias introduced by differential feeding habits. Noticeably, here we
find alterations in the same tryptophan pathways and purines metabolism whose trends
are superimposable to those observed, contrasting ASD cases and typically-developing
controls [24], but metabolite concentrations consistently differ to a lesser extent between
ASD cases and their matched unaffected siblings [24]. In this regard, ASD-associated
metabolic profiles may seemingly represent “endophenotypes”, not only associated with
ASD as “biomarkers” but also displaying intermediate phenotypes in first-degree relatives
due to familial genetic contributions and/or to intrafamilial shared environment [41].

Indeed, lower levels of tyrosine and DOPA in the urine of autistic children compared
to typically-developing siblings were observed and perhaps the most striking result to
emerge from our data consists in the elevated urine content of phenylalanine (Figure 6).
The essential amino acid phenylalanine is a metabolic precursor to tyrosine (Tyr) via
phenylalanine hydroxylase (PAH) activity in the liver; a reduction in tyrosine and DOPA in
the urine of young children with idiopathic ASD, led us to hypothesize a deficiency in PAH
activity or in its cofactor tetrahydrobiopterin (BH4). Our results indeed support a reduction
in BH4 as a significant contributor to reduced PAH activity and to the tyr/phe imbalance
described here. Nonetheless, the complexity of these metabolic pathways does not allow
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us to exclude that, in addition to contributions by reduced BH4 levels, PAH activity may
not be decreased.

Phenylalanine and tyrosine are metabolized in similar ways by gut bacteria, leading to
the formation of 4-ethylphenol and p-cresol, which can then be conjugated by the host into
4-ethylphenyl sulfate and p-cresyl sulfate, respectively. Both these compounds originate
mainly from bacterial fermentation of the amino acid phenylalanine and, to a smaller
extent, from amino acid tyrosine. Tyrosine and phenylalanine can undergo reductive as
well as oxidative metabolism by intestinal bacteria [42]. From Figure 6, it emerges that p
cresol can be derived from the catabolism of both tyrosine and phenylalanine; however,
the presence of high amounts of 4-hydroxyphenylpyruvic acid, phenylpyruvic acid and
phenylacetic acid, which are derived exclusively from the catabolism of phenylalanine,
supports the existence of a greater concentration of phenylalanine in the urine of autistic
patients contrasted with typically-developing siblings. Phenylpyruvic, phenylacetic acid as
bacteria degradation and fermentable substrates for the gut microbiota undergo intense
proteolysis into amino acids, and colonic amino acids may be further metabolized by
the gut microbiota. Moreover, 4-ethylphenyl sulfate, together with p-cresol and p-cresyl
sulfate, have been associated with ASD in both young affected children [12,22,24,43–45]
and cellular/animal models [13,37–39,46]. Importantly, p-cresol has been recently shown
to impair neural differentiation and decrease both neurites outgrowth and synaptogenesis
in neuronal cell lines [13]. p-Cresol and 4-ethylphenol are produced through aromatic
amino acid fermentation by a range of commensal bacteria, most notably bacteria from
the Clostridioides genus, which are among the dysregulated bacteria frequently detected
in ASD patients [46]. In addition to host metabolism, there is ample evidence that the
gut microbiota is actively involved in aromatic amino acid (AAA) metabolism. When the
activity of the enzyme PAH is reduced, the amino acid phenylalanine accumulates and is
converted into phenylpyruvic acid (phenylpyruvate) by the gut microbiome, which also
transforms AAAs into numerous metabolites that may regulate immune, metabolic, and
neuronal responses at local and distant sites. This chemical dialogue between host cells
and the gut microbiome is shaped by environmental cues and may become dysregulated in
gastrointestinal and systemic diseases. These biochemical changes are consistent with some
of the known abnormalities of gut microbiota found in autistic individuals. From this point
of view, environmental factors could play a relevant role in clinical features, and among
them, the overgrowth of unusual gut microbial species in a group of autistic patients is of
great interest, as reported in several recent studies [47–50]. The possibility that alterations
in the gut may be important in the pathophysiology of human central nervous system
disorders is now increasingly appreciated [51]. As a typical mechanism of host–microbe
communication, the gut microbiota produces thousands of small molecules and metabolites
that accumulate in the gastrointestinal system or reach distant organs. Well documented
is the toxic retention solutes by p-cresol, when they reach high concentrations in uremic
patients [52–54].

The present study has at least two main limitations. First, the sample size is relatively
small due to the difficulty in recruiting families with affected and unaffected sibling pairs
tightly matched by sex and age. Secondly, while our patient sample is well-characterized
and in all regards fits with the prevalence rates of behavioral symptoms and co-morbid
conditions, such as sleep disturbances and gastrointestinal issues, as previously reported in
ASD [55,56], unaffected siblings have not been formally assessed for behavioral disorders
and medical issues. Their “typical development” is defined only based on parental reports
and a brief interview with our medical personnel. Despite these limitations, confidence
in the reliability of the present findings is strengthened by our replication of previous
results [24] obtained using two non-overlapping ASD samples contrasted with two en-
tirely distinct control samples, namely 30 unrelated controls in Gevi et al. (2016) [24] and
14 unaffected siblings in this study.
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5. Conclusions

The analysis of urine by applying metabolomic approaches appears to be a promising
avenue to learn more about ASD and even correctly distinguish autistic from typically-
developing siblings within families at increased risk of recurrence. In this study, by con-
trasting young children with idiopathic ASD and their typically-developing siblings, we
confirmed our previous results obtained contrasting ASD children with unrelated typically
developing controls, namely an alteration of purine and tryptophan metabolism. The
present data, furthermore, distinguish between ASD and typically-developing siblings
based on excessive urinary concentrations of phenylalanine, possibly due to both a malfunc-
tion of the PAH enzyme and reduced amounts of its cofactor BH4. Decreased phenylalanine
transformation into tyrosine would be predicted to yield increased blood concentrations
and, therefore, greater phenylalanine excretion in the urines. However, measurements of
phenylalanine plasma levels in ASD vs. typically developing controls provide contrasting
results, with ASD < CON in most studies [57–59], ASD > CON in Aldred et al. (2003) [60],
and ASD = CON, but phe/tyr ratio ASD > CON, in Bala et al. (2016) [61]. This sampling
variability again underscores the importance of replicating our previous results [24]. Finally,
collectively, our studies provide converging evidence that altered metabolomic profiles
in ASD may represent an endophenotype, reflecting the existence of a “metabolic autistic
spectrum” whereby unaffected siblings may represent an intermediate phenotype between
autistic siblings and typically developing controls. Whether and to what extent this de-
pends on shared genetic or environmental underpinnings, including partially shared gut
microbiota composition between affected and unaffected siblings, remains to be elucidated.
Contrasting well-matched ASD-unaffected siblings and unrelated control trios in the same
study will be necessary to address these important questions.
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